基因工程藥物的化學本質是什麼,基因工程藥物的特點

2021-03-04 04:53:33 字數 5200 閱讀 9535

1樓:哭笑不由我

基因工程藥物是先確定對某種疾病有預防和**作用的蛋白質,然後將控制該蛋白質合成過程的基因取出來,經過一系列基因操作,最後將該基因放入可以大量生產的受體細胞中去,這些受體細胞包括細菌、酵母菌、動物或動物細胞、植物或植物細胞,在受體細胞不斷繁殖過程中,大規模生產具有預防和**這些疾病的蛋白質,即基因疫苗或藥物。就其化學本質而言都是一些如c、h、o、n、s等化學元素組成的化學品。

基因工程藥物的特點

2樓:匿名使用者

目前世界許多國家將生物

技術,資訊科技和新材料技術作為三大重中之重技術,而生物技術可以分為傳統生物技術,工業生物發酵技術和現代生物技術。現在人們常說的生物技術實際上就是現代生物技術。現代生物技術包括基因工程、蛋白質工程、細胞工程、酶工程和發酵工程等五大工程技術。

其中基因工程技術是現代生物技術的核心技術。

既然基因工程技術是如此之重要,那麼什麼是基因工程呢?基因工程(ge***ic engineering)是指在基因水平上,採用與工程設計十分類似的方法,按照人類的需要進行設計,然後按設計方案建立出具有某種新的性狀的生物新品系,並能使之穩定地遺傳給後代。根據這個定義,基因工程明顯地既具有理學的特點,同時也具有工程學的特點。

「基因」這個名稱已在多處提到,那麼基因又是什麼呢?根據國內外的教科書和權威辭典上的解釋加以綜合,「基因」(gene)應定義為:基因是一段可以編碼具有某種生物學功能物質的核苷酸序列。

基因工程的核心技術是dna的重組技術,也就是基因轉殖技術。重組,顧名思義,就是重新組合,即利用供體生物的遺傳物質,或人工合成的基因,經過體外或離體的限制酶切割後與適當的載體連線起來形成重組dna分子,然後在將重組dna分子匯入到受體細胞或受體生物構建轉基因生物,該種生物就可以按人類事先設計好的藍圖表現出另外一種生物的某種性狀。比如前面已提到的用動物來生產人的乳鐵蛋白,抗凝血酶和白蛋白。

除dna重組技術外,基因工程還應包括基因的表達技術,基因的突變技術,基因的匯入技術等。有關這些方面的技術將在以後相應的章節中予以介紹。

由於基因工程是在分子水平上進行操作,最終是為了創造出人們所需要的新品種,因而它可以突破物種間的遺傳障礙,大跨度的超越物種間的不親和性。比如在基因工程中最常使用的大腸桿菌,它是一種原核生物,但它卻能大量表達來自於人類的某些基因。例如各種人的多肽生長因子基因就可用大腸桿菌來生產。

如果用常規的育種技術來做同一項工作,那麼成功的機會應為零。因此,科學家們可以利用基因工程實現人類的各種物種改良的願望。

因為現在生活在地球上的各種生物都是經過長期的生物進化演變而來,雖然不能說它們都很能適應現在的生態環境,但至少可以說它們基本上都能適應當前的生態環境。這也就是說,每種生物體內或細胞內都處於精巧的調節控制和平衡之中。當用基因工程方法引入一段外源基因片段後,原有的平衡可能被打破,有可能導致細胞內的生物學功能發生紊亂,最後有可能導致細胞生長緩慢乃至細胞死亡。

很顯然,開展基因工程研究的目的既要使細胞象往常一樣正常生長,又要使細胞產生甚至大量產生人類所需要的外源基因表達產物。

基因工程如此之重要,那麼基因工程可以應用在哪些領域或行業?

科技或科學技術實際上是科學和技術兩個名稱構成的,它們是兩個既有聯絡又有區別的概念。科學主要是指發現自然界的規律,建立各種與自然界規律相適應的理論;而技術則是指在探索自然規律時所使用的一些方法。一些新的科學發現或新理論的建立,會導致一場技術革命,新技術新方法的建立又會推動新的自然規律的發現,因此,兩者是相互促進的。

從70年代起逐步建立起來的基因工程技術,使基因或一些具有特殊功能的dn**段的分離變得十分容易。這些基因或特殊dn**段的一級結構(即它們的核苷酸序列)的測定也是十分容易的,由基因的核苷酸序列去推測蛋白質的氨基酸殘基的序列也變得輕易而舉。利用計算機技術可以很容易的對推測出來的蛋白質進行高階結構的分析,可以對來自不同生物種類的基因序列進行同源性分析。

所有這些方法或技術的廣泛使用,不僅大大地推動了分子生物學的迅猛發展,而且也大大推動了生命科學各個分支領域的迅速發展。因此,基因工程技術的第乙個重要應用領域就是大大的推動了科學理論研究的發展。

由於基因工程是從遺傳物質基礎上對原有的生物(常常稱之為受體生物)進行改造,經過改造的生物就會按照研究者的意願獲得某種(些)新的基因,從而使該生物獲得某些新的遺傳性狀。這種性狀可以用人的肉眼直接觀察到,也可能是通過某些反應或儀器間接觀察到。這種受體生物可能是微生物,植物或動物,因而它會涉及到許多生產行業。

基因工程技術幾乎涉及到人類的生存所必需的各個行業。比如將乙個具有殺蟲效果的基因轉移到棉花、水稻等農作物種中,這些轉基因作物就有了抗蟲能力,因此基因工程被應用到農業領域;要是把抗蟲基因轉移到楊樹、松樹等樹木中,基因工程就被應用到林業領域;要是把生物激素基因轉移到支物中去,這就與漁業和畜牧業有關了;如果利用微生物或動物細胞來生產多肽藥物,那麼基因工程就可以應用到醫學領域。總之一句話,基因工程應用範圍將是十分廣泛的。

簡述基因工程藥物生產的基本過程?

3樓:匿名使用者

基因工程簡介

我們常常說基因是生物體進行生命活動的「藍圖」,這是因為生物體可以通過基因的特異性表達,來完成各種生命活動。例如,青黴菌能夠產生出對人類有用的抗生素——青黴素;豆科植物的根瘤菌能夠固定空氣中的氮;家蠶能夠吐出絲……那麼,人們能不能通過改造生物體的基因,定向地改變生物的遺傳特性呢?比如,通過對基因進行改造和重新組合,讓禾本科的植物也能夠固定空氣中的氮,讓細菌「吐出」蠶絲,讓微生物生產出人的胰島素、干擾素等珍貴的藥物。

科學家們經過多年的努力,終於在20世紀70年代,創立了一種能夠定向改造生物的新技術——基因工程。那麼,什麼是基因工程呢?基因工程又是怎樣改變生物遺傳特性的呢?

一 基因工程的基本內容

基因工程又叫做基因拼接技術或dna重組技術。這種技術是在生物體外,通過對dna分子進行人工「剪下」和「拼接」,對生物的基因進行改造和重新組合,然後匯入受體細胞內進行無性繁殖,使重組基因在受體細胞內表達,產生出人類所需要的基因產物。通俗地說,就是按照人們的主觀意願,把一種生物的個別基因複製出來,加以修飾改造,然後放到另一種生物的細胞裡,定向地改造生物的遺傳性狀。

基因工程是在dna分子水平上進行設計施工的。dna分子的直徑只有2.0nm(粗細只有頭髮絲的十萬分之一),其長度也是極其短小的。

如流感嗜血桿菌的dna,長度只有0.83?m,即使是較大的大腸桿菌,其長度也只有1.

36?m。要在如此微小的dna分子上進行剪下和拼接,是一項非常精細的工作,必須要有專門的工具。

4樓:匿名使用者

基因工程是生物工程的乙個重要分支,它和細胞工程、酶工程、蛋白質工程和微生物工程共同組成了生物工程。 所謂基因工程(ge***ic engineering)是在分子水平上對基因進行操作的複雜技術,是將外源基因通過體外重組後匯入受體細胞內,使這個基因能在受體細胞內複製、轉錄、翻譯表達的操作。它是用人為的方法將所需要的某一供體生物的遺傳物質——dna大分子提取出來,在離體條件下用適當的工具酶進行切割後,把它與作為載體的dna分子連線起來,然後與載體一起匯入某一更易生長、繁殖的受體細胞中,以讓外源物質在其中「安家落戶」,進行正常的複製和表達,從而獲得新物種的一種嶄新技術。

基因工程是在分子生物學和分子遺傳學綜合發展基礎上於本世紀70年代誕生的一門嶄新的生物技術科學。一般來說,基因工程是指在基因水平上的遺傳工程,它是用人為方法將所需要的某一供體生物的遺傳物質--dna大分子提取出來,在離體條件下用適當的工具酶進行切割後,把它與作為載體的dna分子連線起來,然後與載體一起匯入某一更易生長、繁殖的受體細胞中,以讓外源遺傳物質在其中"安家落戶",進行正常複製和表達,從而獲得新物種的一種嶄新的育種技術。 這個定義表明,基因工程具有以下幾個重要特徵:

首先,外源核酸分子在不同的寄主生物中進行繁殖,能夠跨越天然物種屏障,把來自任何一種生物的基因放置到新的生物中,而這種生物可以與原來生物毫無親緣關係,這種能力是基因工程的第乙個重要特徵。第二個特徵是,一種確定的dna小片段在新的寄主細胞中進行擴增,這樣實現很少量dna樣品"拷貝"出大量的dna,而且是大量沒有汙染任何其它dna序列的、絕對純淨的dna分子群體。科學家將改變人類生殖細胞dna的技術稱為「基因系**」(germlinetherapy),通常所說的「基因工程」則是針對改變動植物生殖細胞的。

無論稱謂如何,改變個體生殖細胞的dna都將可能使其後代發生同樣的改變。  迄今為止,基因工程還沒有用於人體,但已在從細菌到家畜的幾乎所有非人生命物體上做了實驗,並取得了成功。事實上,所有用於**糖尿病的胰島素都來自一種細菌,其dna中被插入人類可產生胰島素的基因,細菌便可自行複製胰島素。

基因工程技術使得許多植物具有了抗病蟲害和抗除草劑的能力;在美國,大約有一半的大豆和四分之一的玉公尺都是轉基因的。目前,是否該在農業中採用轉基因動植物已成為人們爭論的焦點:支持者認為,轉基因的農產品更容易生長,也含有更多的營養(甚至藥物),有助於減緩世界範圍內的飢荒和疾病;而反對者則認為,在農產品中引入新的基因會產生***,尤其是會破壞環境。

  誠然,仍有許多基因的功能及其協同工作的方式不為人類所知,但想到利用基因工程可使番茄具有抗癌作用、使鮭魚長得比自然界中的大幾倍、使寵物不再會引起過敏,許多人便希望也可以對人類基因做類似的修改。畢竟,胚胎遺傳病篩查、基因修復和基因工程等技術不僅可用於**疾病,也為改變諸如眼睛的顏色、智力等其他人類特性提供了可能。目前我們還遠不能設計定做我們的後代,但已有借助胚胎遺傳病篩查技術培育人們需求的身體特性的例子。

比如,運用此技術,可使患兒的父母生乙個和患兒骨髓匹配的孩子,然後再通過骨髓移植來**患兒。隨著dna的內部結構和遺傳機制的秘密一點一點呈現在人們眼前,特別是當人們了解到遺傳密碼是由 rna轉錄表達的以後,生物學家不再僅僅滿足於探索、提示生物遺傳的秘密,而是開始躍躍欲試,設想在分子的水平上去干預生物的遺傳特性。 如果將一種生物的 dna中的某個遺傳密碼片斷連線到另外一種生物的dna鏈上去,將dna重新組織一下,就可以按照人類的願望,設計出新的遺傳物質並創造出新的生物型別,這與過去培育生物繁殖後代的傳統做法完全不同。

這種做法就像技術科學的工程設計,按照人類的需要把這種生物的這個「基因」與那種生物的那個「基因」重新「施工」,「組裝」成新的基因組合,創造出新的生物。這種完全按照人的意願,由重新組裝基因到新生物產生的生物科學技術,就稱為「基因工程」,或者說是「遺傳工程」。 【基因工程的基本操作步驟】1.

獲取目的基因是實施基因工程的第一步。2.基因表達載體的構建是實施基因工程的第二步,也是基因工程的核心。

3.將目的基因匯入受體細胞是實施基因工程的第三步。4.

目的基因匯入受體細胞後,是否可以穩定維持和表達其遺傳特性,只有通過檢測與鑑定才能知道。這是基因工程的第四步工作。基因工程的前景科學界預言,21世紀是乙個基因工程世紀。

基因工程是在分子水平對生物遺傳作人為干預,要認識它,我們先從生物工程談起:生物工程又稱生物技術,是一門應用現代生命科學原理和資訊及化工等技術,利用活細胞或其產生的酶來對廉價原材料進行不同程度的加工,提供大量有用產品的綜合性工程技術。

基因工程的原理是什麼,基因工程的原理是什麼?是不是基因重組

大腦彩虹圖 基因工程是生物工程的乙個重要分支,它和細胞工程 酶工程 蛋白質工程和微生物工程共同組成了生物工程。所謂基因工程 ge ic engineering 是在分子水平上對基因進行操作的複雜技術。是將外源基因通過體外重組後匯入受體細胞內,使這個基因能在受體細胞內複製 轉錄 翻譯表達的操作。它是用...

基因工程為什麼是基因重組,基因工程的原理是什麼?是不是基因重組

基因工程是把目的基因與受體細胞的基因整合在一起,使外源基因隨著受體細胞的dna的複製而複製,並使其控制的性狀在其他生物體表達,並沒有改變受體細胞的染色體結構和數目。基因工程的原理是什麼?是不是基因重組 基因工程又被稱 為基因拼接技術和dna重組技術,包括把來自不同生物的基因同有自主複製能力的載體dn...

什麼是基因工程?基因工程和dna重組的關係如何

基因工程 ge ic engineering 又稱基因拼接技術和dna重組技術,是以分 子遺傳學為理論基礎,以分子生物學和微生物學的現代方法為手段,將不同 的基因按預先設計的藍圖,在體外構建雜種dna分子,然後匯入活細胞,以改變生物原有的遺傳特性 獲得新品種 生產新產品。基因工程技術為基因的結構和功...