數學三角函式常用公式

2021-12-19 11:21:53 字數 6083 閱讀 8513

1樓:匿名使用者

1、積化和差公式:   sinαsinβ=-[cos(α+β)-cos(α-β)]  cosαcosβ=[cos(α+β)+cos(α-β)]  sinαcosβ=[sin(α+β)+sin(α-β)]  cosαsinβ=[sin(α+β)-sin(α-β)]  積化和差公式是由正弦或余弦的和角公式與差角公式通過加減運算推導而得。其中後兩個公式可合併為乙個:

sinαcosβ=[sin(α+β)+sin(α-β)]  2、和差化積公式  sinθ+sinφ=2sincos  sinθ-sinφ=2cossin  cosθ+cosφ=2coscos  cosθ-cosφ=-2sinsin  和差化積公式是積化和差公式的逆用形式,要注意的是:  ①其中前兩個公式可合併為乙個:sinθ+sinφ=2sincos  ②積化和差公式的推導用了「解方程組」的思想,和差化積公式的推導用了「換元」思想。

  ③只有係數絕對值相同的同名函式的和與差,才能直接運用公式化成積的形式,如果乙個正弦與乙個余弦的和或差,則要先用誘導公式化成同名函式後再運用公式化積。  ④合一變形也是一種和差化積。  ⑤三角函式的和差化積,可以理解為代數中的因式分解,因此,因式分解在代數中起什麼作用,和差化積公式在三角中就起什麼作用。

  3、積化和差與積差化積是一種孿生兄弟,不可分離,在解題過程中,要切實注意兩者的交替使用。如在一般情況下,遇有正、余弦函式的平方,要先考慮降冪公式,然後應用和差化積、積化和差公式交替使用進行化簡或計算。和積互化公式其基本功能在於:

當和、積互化時,角度要重新組合,因此有可能產生特殊角;結構將變化,因此有可能產生互消項或互約因式,從而利於化簡求值。正因為如此「和、積互化」是三角恒等變形的一種基本手段。

2樓:匿名使用者

常用的誘導公式有以下幾組:

公式一:

設α為任意角,終邊相同的角的同一三角函式的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

設α為任意角,π+α的三角函式值與α的三角函式值之間的關係:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α與 -α的三角函式值之間的關係:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α與α的三角函式值之間的關係:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α與α的三角函式值之間的關係:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α與α的三角函式值之間的關係:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈z)

一般的最常用公式有:

sin(a+b)=sina*cosb+sinb*cosa

sin(a-b)=sina*cosb-sinb*cosa

cos(a+b)=cosa*cosb-sina*sinb

cos(a-b)=cosa*cosb+sina*sinb

tan(a+b)=(tana+tanb)/(1-tana*tanb)

tan(a-b)=(tana-tanb)/(1+tana*tanb)

平方關係:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

·積的關係:

sinα=tanα*cosα

cosα=cotα*sinα

tanα=sinα*secα

cotα=cosα*cscα

secα=tanα*cscα

cscα=secα*cotα

·倒數關係:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

直角三角形abc中,

角a的正弦值就等於角a的對邊比斜邊,

余弦等於角a的鄰邊比斜邊

正切等於對邊比鄰邊,

三角函式恒等變形公式

·兩角和與差的三角函式:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·輔助角公式:

asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中

sint=b/(a^2+b^2)^(1/2)

cost=a/(a^2+b^2)^(1/2)

·倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

·三倍角公式:

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

·半形公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

·降冪公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=vercos(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

· 萬能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

·積化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·和差化積公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

·其他:

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanatanbtan(a+b)+tana+tanb-tan(a+b)=0

部分高等內容

·高等代數中三角函式的指數表示(由泰勒級數易得):

sinx=[e^(ix)-e^(-ix)]/(2i)

cosx=[e^(ix)+e^(-ix)]/2

tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]

泰勒有無窮級數,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…

此時三角函式定義域已推廣至整個複數集。

·三角函式作為微分方程的解:

對於微分方程組 y=-y'';y=y'''',有通解q,可證明

q=asinx+bcosx,因此也可以從此出發定義三角函式。

補充:由相應的指數表示我們可以定義一種類似的函式——雙曲函式,其擁有很多與三角函式的類似的性質,二者相映成趣。

特殊三角函式值

a 0` 30` 45` 60` 90`

sina 0 1/2 √2/2 √3/2 1

cosa 1 √3/2 √2/2 1/2 0

tana 0 √3/3 1 √3 none

cota none √3 1 √3/3 0

三角函式的計算

冪級數c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)

c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)

它們的各項都是正整數冪的冪函式, 其中c0,c1,c2,...cn...及a都是常數, 這種級數稱為冪級數.

泰勒式(冪級數法):

f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...f(n)(a)/n!*(x-a)n+...

實用冪級數:

ex = 1+x+x2/2!+x3/3!+...+xn/n!+...

ln(1+x)= x-x2/3+x3/3-...(-1)k-1*xk/k+... (|x|<1)

sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞

cos x = 1-x2/2!+x4/4!-...(-1)k*x2k/(2k)!+... (-∞

arcsin x = x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... (|x|<1)

arccos x = π - ( x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... ) (|x|<1)

arctan x = x - x^3/3 + x^5/5 - ... (x≤1)

sinh x = x+x3/3!+x5/5!+...(-1)k-1*x2k-1/(2k-1)!+... (-∞

cosh x = 1+x2/2!+x4/4!+...(-1)k*x2k/(2k)!+... (-∞

arcsinh x = x - 1/2*x3/3 + 1*3/(2*4)*x5/5 - ... (|x|<1)

arctanh x = x + x^3/3 + x^5/5 + ... (|x|<1)

傅利葉級數(三角級數)

f(x)=a0/2+∑(n=0..∞) (ancosnx+bnsinnx)

a0=1/π∫(π..-π) (f(x))dx

an=1/π∫(π..-π) (f(x)cosnx)dx

bn=1/π∫(π..-π) (f(x)sinnx)dx

注意:正切也可以表示為「tg」 如:tana=tga

sin2a=2sinacosa

cos2a=cosa^2-sina^2

=1-2sina^2

=2cosa^2-1

tan2a=2tana/1-tana^2

三角函式公式大全,三角函式公式總結

sina a c 即角a的對邊比斜邊 cosa b c 即角a的鄰邊比斜邊 tana a b 即角a的對邊比鄰邊 cota b a 即角a的鄰邊比對邊 seca c b 即角a的斜邊比鄰邊 csca c a 即角a的斜邊比對邊 sinasina sinbsinb 1 sina cosa tana t...

三角函式的轉換公式,三角函式的轉換公式

同角三角函式的基本關係式 倒數關係 商的關係 平方關係 tan cot 1 sin csc 1 cos sec 1sin cos tan sec csc cos sin cot csc sec sin2 cos2 1 1 tan2 sec2 1 cot2 csc2 誘導公式 sin sin cos ...

數學三角函式

把後面的cos2x改寫成sin 2 2x 然後直接套用sin sin 2cos 2 2 sin 2 2 即可知道,原式 2cos 4 sin 2x 4 即根號2倍的sin 2x 4 搞定 sin2x cos2x 2sin2xcos 4 2cos2xsin 4 2sin 2x 4 由書上公式還可以化成...