1樓:天tineka下
第一問:可知拋物線過a(k,0),b(3,0),c(0,3k)三點,所以頌行可解得圖象解析式為:y=x^2-(3+k)x+3k
第二問:過e點作ef平行於x軸野梁譁交y軸於點f,則此渣寬時三角形aoc全等於三角形efd,所以ef=ao=|k|,因為k<0,所以e的橫座標為-k,此時可有拋物線表示式得fo=2k^2+6k,又因為oc=fd,所以2k^2+6k+t=3k,所以t與k的函式關係為:
t=-2k^2-3k
第三問:答:能。
因為為矩形,所以三角形cad為rt三角形,所以有:(3k+t)^2=10k^2+t^2+k^2,所以解得:t=k/3,又由上問得:
t=-2k^2-3k,所以聯立解得:0=3k^2+5k,所以k1=0(捨去,因為k<0) k2=-5/3,所以t=-5/9,所以d點座標為(0,-5/9)
2樓:鎢硫釔
你好!!!一:!
因為 tan∠cao=3
所以 oc/oa=1/3
所以 oa=k,oc=1/3k
代入:=9*a+3*b-1/3*k
k^2*a+k*b-1/3k
因謹歲嫌為k不等於0
所以 等雀塌式二得0=k*a+b-1/3
所以: a=(1-1/3*k)/(9-3*k)所以a=-1/9,且k不等於3
b=1/3+1/9*k
y=-1/9*x^2+(1/3+1/9*k)-1/3*k二:!不會。
三:!不會就蒙"能"。
如果能,我只能算出d(0,3k),e點的不會算祥手,a(k,0),c(-1/3k)
埃。。老了,好久沒做題了。。。
謝謝!!!
幾何函式,請教高手
3樓:
需要下面兩個公式:
積化和差:cosαsinβ=(1/2)[sin(α+sin(α-
和差化積:sina-sinb=2cos[(a+b)/2]sin[(a-b)/2]
1) cos2θsinθ=(1/2)[sin(2θ+θsin(2θ-θ
cos2θsinθ=(1/2)[sin3θ-sinθ]
同理。cos4θsinθ=(1/2)[sin5θ-sin3θ]
cos6θsinθ=(1/2)[sin7θ-sin5θ]
cos2nθsinθ=(1/2)[sin(2n+1)θ-sin(2n-1)θ]
將上面n個等式相加,得(注意,每乙個等式右邊的中括號內的第一項與後乙個等式的中括號內的第二項互為相反數)
sinθσcos2rθ=(1/2)[sin(2n+1)θ-sinθ]
cossin
sin(nθ) cos(n+1)θ
2)有(1)得到σcos2rθ=sin(nθ) cos(n+1)θ/sinθ
令θ=π100,n=100 ,得到:
cos(rπ/100)]^2
1+cos2rπ/100]/2
這裡注意sin100π/100=sinπ=0)
求解一到幾何體
4樓:不
18,選d,答案錯,也許答案是當成求邊了。
數學幾何體,求解答
5樓:匿名使用者
延長de 交 ab 的延長線 於 f
直角梯形abcd
ab//cd
cde=efb
又∵e是cb中點。
ce= eb
cde ≌△bfe ( aas)
de= ef cd=bf
e是df 中點。
ad=cd+ab
ad=bf+ab=af
adf 是等腰三角形。
又∵ e是df 中點。
ae平分 ∠bad (三線合一)
寫的有些煩了,有些步驟,你看著省掉吧。。。
6樓:慕野清流
法1.延長ae(de也一樣)交dc於f cef全等bea
def全等eda 很簡單就出來了。
法2.過e做ab平行線,這個發更簡單。
數學幾何體,**等,求解……
7樓:匿名使用者
證明:dc⊥面abc =>dc⊥ac 且 dc⊥bc角acb=90° 所以 ac⊥bc
又∵四邊性bcde為矩形 ∴ bc∥de
dc⊥de 且 ac⊥de
de⊥面acd
又∵de∈面ade
面acd⊥面ade
2)解:過衡渣好c作cf⊥ab於f,則梁培顯然dc⊥ab(咐鉛ab∈面abc)
ab⊥面cdf ∴df⊥ab
cfd為d-ab-c的二面角。
cd⊥cf ∴tg∠cfd=cd/cf
cd=1,ac=1,bc=2
cf=2/sqrt(5)
tg∠cfd=2/sqrt(5)
cos∠cfd=2/3
二面角d-ab-c的餘弦值為2/3望!!
8樓:雲ss晴筱
1)證明:∵∠acb=90°,∴bc⊥ac,∵在祥世矩形bcde中,bc⊥dc,bc∥de∴de⊥納友ac,de⊥dc,即de⊥面acd,∵deㄷ面ade∴面acd⊥面ade 證畢。
2)解:過c做cf⊥ab於f,連線df
洞宴槐dc⊥面abc,∴dc⊥ab,即ab⊥面cdf,即∠cfd為二面角d-ab-c的平面角。
dc⊥面abc,∴dc⊥cf∵由題意可知,ac=dc=1,bc=2,則ab=√5,cf=(2√5)/5,df=(3√5 )/5
cos∠dfc=2/3
幾何體求解答
9樓:網友
因為三角形def相似於三角形abc且ab=2de
10樓:esports血色
1不會還是2不會,1是有錯的。
乙個有關幾何體積的問題,求幾何體的體積
貨箱b裝入a箱不管怎麼擺,最多個。方法,就段褲帶是將三純態個方向的長度對應相除,再相乘積,有三個不同的積,,,,取最大數,就是. 貨箱b裝入a箱不管怎麼擺,最多個。方法同 把貨箱b和貨箱c一同放在箱a裡,b幾個?c幾個?這個條件不充分,因為,我可以放好多個c箱,快放滿時再放幾個b箱。或先放好多b箱,...
怎麼由幾何體的三檢視畫直觀圖,已知乙個幾何體的三檢視如下圖,大致畫出它的直觀圖,並求出它的表面積和體積
斜二測畫法只是立體圖的一種畫法而已,不能幫助將三檢視畫成立體圖的你這個難題我小時候也遇到了 我的解決辦法就是不斷的練習 先從簡單的正方體,長方體練起 然後是組合體 然後是複雜構形的 練習多了看到三檢視的時候就能夠浮現出立體圖的影子了 可以將三個檢視看作是乙個物體的三個面,用組合的方法往一起套,這樣可...
請數學高手幫忙。一次函式問題
設該函式為y kx b,任意給出兩點設為 x,y x,y 代入所設方程可得乙個方程組y k x b,y k x b.兩個方程兩個未知數,如果你會解方程組,那麼你就能解出來了,因為後面就不是函式題,而是解方程的過程了。你這個例題就可以這麼做,設為y kx b,兩點為 , 和 , 代入方程,可得 k b...