函式在某點連續的充要條件,還有在某點可導的充要條件,說詳細點

2021-03-27 10:11:04 字數 4321 閱讀 4849

1樓:_深__藍

判斷函式f(x)在x0點處連續,當且僅當f(x)滿足以下三個充要條件:

1、f(x)在x0及其左右近旁有定義。

2、f(x)在x0的極限存在。

3、f(x)在x0的極限值與函式值f(x0)相等。

函式在某一點可導的充要條件為:若極限 (h->0) lim [ f(x0+h) - f(x0)] / h 存在,則函式f(x)在x0處可導。當自變數的增量趨於零時,因變數的增量與自變數的增量之商的極限。

在乙個函式存在導數時,稱這個函式可導或者可微分。

函式的求導法則:

2、線性性:求導運算也是滿足線性性的,即可加性、數乘性,對於n個函式的情況:

2樓:勤奮的楊

、左導數=右導數=該點的導數值。

函式在某點連續,只是函式在該點可導的必要條件,並不充分。

從幾何直觀考察,函式圖象只要不是尖點,就可導;如果是兩段直線的交點,則交點處不可導。

3樓:匿名使用者

叫一下數學老師吧,只是有限,抱歉回答不了你

函式在某一點可導的充要條件

4樓:李維

滿足(h->0) lim [ f(x0+h) - f(x0-h) ] / h = a和f(x)可導的充要條件是不同的。因為(h->0) lim [ f(x0+h) - f(x0-h) ] / h = a,左邊=lim [( f(x0+h) - f(x0) )+( f(x0)- f(x0-h) )] / h ,可以看成是兩個部分

了(每部分確實都是符合可導的充要條件的),但兩個部分之和的極限存在,不能說明兩部分各自的極限都存在,即不能拆成lim [( f(x0+h) - f(x0) )/h +lim [( f(x0)- f(x0-h) )] / h ,因此題設是不滿足可導的充要條件的

5樓:匿名使用者

(h->0) lim [ f(x0+h) - f(x0)] / h 存在

和(h->0) lim [ f(x0+h) - f(x0-h) ] / h存在

這兩個又不等價

上面是下面的充分非必要條件

6樓:玉杵搗藥

函式f(x)在x0處可導的充要條件是:f'(x0+)存在、f'(x0-)存在,且f'(x0+)=f'(x0-)

7樓:和解決方法回家

定義是函式在某點附近有極值,附近即左右都可導。而這個分段函式在x=0附近不是連續曲線,所以在x=0時根本就沒有極限。

函式在某一點可導的充分必要條件是什麼? 函式在某一點導函式連續的充分必要條件是什麼? 30

8樓:o客

函式在某一點可導的充分必要條件是

函式在該點的左右導數存在而且相等。

函式在某一點導函式連續的充分必要條件是

導函式在該點的左右極限存在且相等,且該點的導數值等於極限值。

9樓:風向儀圍城

函式在某一點可導的充分必要條件有滿足導數定義 、可微

、左右導數存在且相等。函式在某一點導函式連續的充分必要條件就是導函式作為函式時連續的充分必要條件。

【擴充套件資料】

在數學上,函式的定義為:給定乙個非空的數集a,對a施加對應法則f,記作f(a),得到另一數集b,也就是b=f(a).那麼這個關係式就叫函式關係式,簡稱函式.

函式具有有界性、奇偶性,凹凸性、單調性、連續性以及週期性。

在某變化過程中有兩個變數x,y,按照某個對應法則,對於給定的x,有唯一確定的值y與之對應,那麼y就叫做x的函式。其中x叫自變數,y叫因變數。

在乙個變化過程中,發生變化的量叫變數,有些數值是不隨變數而改變的,我們稱它們為常量。

自變數,函式乙個與它量有關聯的變數,這一量中的任何一值都能在它量中找到對應的固定值。

因變數(函式),隨著自變數的變化而變化,且自變數取唯一值時,因變數(函式)有且只有唯一值與其相對應。

10樓:際遇

函式在一點可導的充分必要條件是連續的函式,在該點的左右極限存在且相等.

當然,同濟課本上這麼說過,函式可導的充要條件是左導數和右導數相等,這是乙個意思.

這個不會了。。。

11樓:

函式在某一點可導的充分必要條件是極限

lim(δx->0)[f(x+δx)-f(x)]/δx存在。

函式在某一點導函式連續的充分必要條件就是f'(x)在該點連續:

12樓:娶個名字可以不

函式在某點可導的充要條件

1、該點有定義(否則怎麼定義法求導)

2、左右導數存在且相等

導函式連續嘛不就是把導函式看成函式,用函式連續性的充要條件。函式連續的充要條件是該點函式極限等於該點函式值。另外如果存在二階導數,一階導函式一定連續,反之不一定,所以不能一步到位。

13樓:匿名使用者

這是乙個數學問題,自己算好了,這事我也是不懂的,你可以問到老師啊

函式在某一處可導是函式在該點連續的什麼條件

14樓:匿名使用者

但不必要條件

可導必然連續,所以是充分條件

但是連續不一定可導,所以是不必要條件。

因此,函式在某一處可導是函式在該點連續的充分但不必要條件當然,這些都是針對一元函式來說的。

什麼方法判斷函式在某一點是否是可導,連續的,可導和連續的條件

15樓:匿名使用者

函式在某點連續:baif(

dux)+=f(x)-=f(x),形象點說就zhi是函式的dao

影象是可以一筆畫出來的專,中間沒屬有跳躍,但可以有尖銳的拐角比如f(x)=|x|在x=0時連續。

函式在某點可導:f'(x)+=f'(x)-=f'(x),形象點說就是函式影象在這點需要很圓滑的畫出來,不能有尖銳的拐角跟跳躍,f(x)=|x|在x=0時,有個90度尖銳拐角那他就不是可導的

函式在某點處連續是函式在此處可導的( )a充分但不必要條件 b必要但不充分條件 c充要條件

16樓:匿名使用者

可導 => 連續

連續 ≠> 可導

∴可導是連續的充分不必要條件

∴選項c正確

17樓:匿名使用者

連續不一定可導,可導一定連續。選b

函式在某一點可導與連續,可微的關係

18樓:匿名使用者

可微=>可導=>連續=>可積,在一元函式

中,可導與可微等價。

函式在x0點連續的充要條件為f(x0)=lim(x→x0)f(x),即函式在此點函式值存在,並且等於此點的極限值

若某函式在某一點導數存在,則稱其在這一點可導,否則稱為不可導。可導的充要條件是此函式在此點必須連續,並且左導數等於右倒數。(我們老師曾經介紹過乙個weierstrass什麼維爾斯特拉斯的推導出來的函式處處連續卻處處不可導,有興趣可以查一下)

可微在一元函式中與可導等價,在多元函式中,各變數在此點的偏導數存在為其必要條件,其充要條件還要加上在此函式所表示的廣義麵中在此點領域內不含有「洞」存在,可含有有限個斷點。

函式可積只有充分條件為:①函式在區間上連續②在區間上不連續,但只存在有限個第一類間斷點(跳躍間斷點,可去間斷點)上述條件實際上為黎曼可積條件,可以放寬,所以只是充分條件

ps:你是不是也準備考研呀,我今天做題目也被這個關係卡住了,嘿嘿,順便查閱了下書本,加油哈!

高等數學中關於函式連續與可導的充要條件是什麼?

19樓:

連續:某區間上,任意點處的極限存在且等於該點處的的函式值。 可導:在連續的基礎上,該點的左右導數也要相等。

20樓:老蝦公尺

可導與可微等價,可導一定連續,連續不一定可導。例如y=|x|,x=0時連續但不可導。

21樓:花影雲痕

這個問題情況很多,因為它的判定方法太多了,所以你要先說在什麼條件下,然後再說它的充要條件是什麼。

22樓:企鵝破產

可導是乙個定義,對於基本函式我們可以運用它的性質得出可導的區間,非初等函式則要根據導數的定義。對於一元函式可導和可微是等價的說法,對於多元函式可偏導並不一定可微。

對於初級函式,函式在區間(a,b)上連續,若在區間(a,b)上有x=xo,存在c,c趨近於無窮小(即趨於0),f(xo-c)=f(xo+c)=f(xo),則f(x)在x=xo處可導,反之亦然。對於其他函式,或許會不適用。

設fx0,則fx在點x0可導的充要條件

f 0 0不是來f x 在點x 0處可源導的充要條件 f 0 左右導數存在且相等是可導的充分必要條件 f 0 可導,f 0 必需連續 導數存在必須 y x k 可以理解為它們是同階的,這個是連續吧 根據導數的定義可以寫出 f x 在點x 0可導的充要條件是lim f h sinh f 0 h sin...

請問,函式在某點既可導又連續,那麼,該函式在該點的鄰域內是否

不是。例如 分段函式 f x x x為有理數 x x為無理數 函式僅在x 0處連續,且可導。其他點不連續,當然就不可導了。這個問題我跟我得研友爭論了一上午,是因為洛必達法則的問題,如果只給出了x0處可導,則不可以用洛法則,應該用定義或者泰勒公式。但我的研友提出了乙個問題,他認為只要某點可導,在某點鄰...

一元函式在某點極限存在是函式在該點連續的什麼條件

必要非充分條件。乙個函式在某點連續的充要條件是它在該點左右都連續。設函式f x 在點x0的某個鄰域內有定義,如果有 對於連續性,在自然界中有許多現象,如氣溫的變化,植物的生長等都是連續地變化著的。這種現象在函式關係上的反映,就是函式的連續性。一元函式在某點的極限存在,則該函式不一定在該點連續 若函式...