如何判斷函式的左右導數是否存在如何判斷乙個函式的左右導數是否存在?

2021-03-05 08:00:07 字數 5699 閱讀 9329

1樓:風紀丶槑

這是乙個分段函式

當x=1時,左右導數都等於2,但是左導

數在函式有定義且連續,右倒數在函式無定義,所以左導數存在,右導數不存在。

拓展資料

函式在某一點極限存在的充要條件:

函式左極限和右極限在某點相等則函式極限存在且為左右極限。

如果左右極限不相同、或者不存在。則函式在該點極限不存在。即從左趨向於所求點時的極限值和從右趨向於所求點的極限值相等。

函式極限存在的條件:

函式極限存在的充要條件是在該點左右極限均存在且相等。

函式導數存在的充要條件是在該點左右導數均存在且相等。

2樓:匿名使用者

1、解導數問題,首先要看對應函式的定義域。

2、由圖可知,這個是分段函式。而導數也要分段研究。

3、當x=1時,代入公式可得;左在1上有意義,而右邊無意義,故選b。

其他方法;

1、從理論上來說,如果左導數等於右導數,而且在該點還得有定義,還得連續。

2、從形狀上,或從直覺上的判斷方法是。

分段函式:對於自變數x的不同的取值範圍,有著不同的對應法則,這樣的函式通常叫做分段函式.它是乙個函式,而不是幾個函式:

分段函式的定義域是各段函式定義域的並集,值域也是各段函式值域的並集.

已知函式定義域被分成有限個區間,若在各個區間上表示對應規則的數學表示式一樣,但單獨定義各個區間公共端點處的函式值;或者在各個區間上表示對應規則的數學表示式不完全一樣,則稱這樣的函式為分段函式。

其中定義域所分成的有限個區間稱為分段區間,分段區間的公共端點稱為分界點。

在定義域的不同範圍函式的解析式不同的函式。如狄利克雷函式。

求分段函式的表示式的常用方法有:待定係數法、數形結合法和公式法等。本題採用數形結合法。

例:求二次函式f(x)=x2-2(2a-1)x+5a2-4a+2在[0,1]上的最小值g(a)的解析式。

解:二次函式f(x)=x2-2(2a-1)x+5a2-4a+2=[x-(2a-1)]2+a2+1影象開口向上,對稱軸是x=2a-1.

(1)若2a-1<0即a<二分之一時,二次函式f(x)在[0,1]上的最小值是g(a)=f(0)=5a2-4a+2;

(2)若0≤2a-1<1即二分之一≤a<1時,二次函式f(x)在[0,1]上的最小值是g(a)=f(2a-1)=a2+1;

(3)若2a-1≥1即a≥1時,二次函式f(x)在[0,1]上的最小值是g(a)=f(1)=1-2(2a-1)+5a2-4a+2=5a2-8a+5.

3樓:匿名使用者

我覺得樓上沒說到點子上 我們用求導公式的時候其實是預設這個函式是連續可導的 而連續可導就是每個點左右導數相等 當不能確定可不可導的時候要用定義去探探路。。。。

4樓:nice可樂哥

查了半天,我終於知道問題在哪了。

limf'(1)=[f(1+h)-f(1)] / h。

h->0+

這裡f(1) = 2/3 ,不要帶入x的平方, 因為f(1)是個確切的值,在分段函式中就是2/3。

代入,結果就為無窮大,所以右導數不存在。

5樓:super澈光

我是學生剛學不久覺得是這樣的但是不一定對啊導數存在的前提是函式得連續

limx→1- f(x)=2/3=f(1) 左連續limx→1+ f(x)=1≠f(1) 右不連續所以此分段函式在分段點x=1處左連續 右不連續 也就是x=1處左導數存在而右導數不存在了

6樓:丿心火丶

導數源於函式,函式首先要看定義域。這個函式是分段的。而導數最重要的一點是對連續函式的研究。

x=1是 左=三分之二 右=1 顯然不是連續函式左在1上有定義且連續 而右無定義 故選b 純手打 望採納哦親~

7樓:等風吹啊吹啊吹

右導數用求極限的方法是正無窮,,所以不存在

8樓:匿名使用者

y=x^2,x>1,x的定義域是大於1,x=1不再定義域範圍,導毛啊

9樓:殘垣苟且

極限都求錯了,怎麼研究導數

數學題:如何判斷乙個函式在某一點處可以導數?

10樓:匿名使用者

首先判斷函式在抄這個點x0是否有定義襲

,即f(x0)是否bai存du在;其次判斷f(x0)是否連續,即f(x0-), f(x0+), f(x0)三者是否相zhi等;再dao次判斷函式在x0的左右導數是否存在且相等,即f『(x0-)=f'(x0+),只有以上都滿足了,則函式在x0處才可導。

函式可導的條件:

如果乙個函式的定義域為全體實數,即函式在其上都有定義,那麼該函式是不是在定義域上處處可導呢?答案是否定的。函式在定義域中一點可導需要一定的條件:

函式在該點的左右兩側導數都存在且相等。這實際上是按照極限存在的乙個充要條件(極限存在,它的左右極限存在且相等)推導而來。

可導的函式一定連續;不連續的函式一定不可導。

可導,即設y=f(x)是乙個單變數函式, 如果y在x=x0處存在導數y′=f′(x),則稱y在x=x[0]處可導。

如果乙個函式在x0處可導,那麼它一定在x0處是連續函式。

函式可導定義:(1)設f(x)在x0及其附近有定義,則當a趨向於0時,若 [f(x0+a)-f(x0)]/a的極限存在, 則稱f(x)在x0處可導。

(2)若對於區間(a,b)上任意一點(m,f(m))均可導,則稱f(x)在(a,b)上可導。

函式在某點是否連續? ,到底是證明左右導數是否存在呢 還是證明左右極限是否存在?

11樓:淨末拾光

可以模擬一下bai,在某一du

點連續,就是需要極限值

zhi=函式值,dao而一元函式的極專限是左右屬方向趨近的,就需要左右極限相等。

同樣的,在某一點可導,也是需要導函式首先要存在,進而導函式在這一點連續,也就回到了函式連續的類似概念,在這一點左右導數需要相等,才能保證(導函式連續)在此點可導。

12樓:匿名使用者

? 前八十回? 後四十回

怎樣判斷乙個函式在某一點處可導

13樓:匿名使用者

首先判斷函式在這個點x0是否有定義,即f(x0)是否存在;其次判斷f(x0)是否連續,即f(x0-), f(x0+), f(x0)三者是否相等;再次判斷函式在x0的左右導數是否存在且相等,即f『(x0-)=f'(x0+),只有以上都滿足了,則函式在x0處才可導。

函式可導的條件:

如果乙個函式的定義域為全體實數,即函式在其上都有定義,那麼該函式是不是在定義域上處處可導呢?答案是否定的。函式在定義域中一點可導需要一定的條件:

函式在該點的左右兩側導數都存在且相等。這實際上是按照極限存在的乙個充要條件(極限存在,它的左右極限存在且相等)推導而來。

可導的函式一定連續;不連續的函式一定不可導。

可導,即設y=f(x)是乙個單變數函式, 如果y在x=x0處存在導數y′=f′(x),則稱y在x=x[0]處可導。

如果乙個函式在x0處可導,那麼它一定在x0處是連續函式。

函式可導定義:(1)設f(x)在x0及其附近有定義,則當a趨向於0時,若 [f(x0+a)-f(x0)]/a的極限存在, 則稱f(x)在x0處可導。

(2)若對於區間(a,b)上任意一點(m,f(m))均可導,則稱f(x)在(a,b)上可導。

14樓:匿名使用者

函式在定義區間上連續。

在某一點處的 左極限=右極限

說白了,就是這個函式是連綿不斷,處處光滑,沒有尖銳的稜角的函式就是可導的。

如何判斷乙個函式是否連續,可導,可微,以及偏導數是否存在

15樓:匿名使用者

極限的概念是整個微積分的基礎,需要深刻地理解,由極限的概念才能引出連續、導數、積分等概念。極限的概念首先是從數列的極限引出的。對於任意小的正數e,如果存在自然數m,使所有n》m時,|a(n)-a|都小於e,則數列的極限為a。

極限不是相等,而是無限接近。而函式的極限是指在x0的乙個臨域內(不包含x0這一點),如果對於任意小的正數e,都存在正數q,使所有(x0-q,x0+q)內的點,都滿足|f(x)-a|《e,則f(x)在x0點的極限為a。很多求極限的題目都可以用極限的定義直接求出。

如何判斷乙個函式是否可導具有可導性

16樓:匿名使用者

即設y=f(x)是乙個單變數函式, 如果y在

x=x0處左右導數分別存在且相等,則稱y在x=x[0]處可導。如果乙個函式在x0處可導,那麼它一定在x0處是連續函式。

1、設f(x)在x0及其附近有定義,則當a趨向於0時,若 [f(x0+a)-f(x0)]/a的極限存在, 則稱f(x)在x0處可導。

2、若對於區間(a,b)上任意一點m,f(m)均可導,則稱f(x)在(a,b)上可導。

函式在定義域中一點可導需要一定的條件:函式在該點的左右導數存在且相等,不能證明這點導數存在。只有左右導數存在且相等,並且在該點連續,才能證明該點可導。

可導的函式一定連續;連續的函式不一定可導,不連續的函式一定不可導。

擴充套件資料

函式可導的知識點:

1、所有初等函式在定義域的開區間內可導。

2、所有函式連續不一定可導,在不連續的地方一定不可導。

3、函式在某點的左、右導數存在且相等,則函式在該點可導。

4、函式在開區間的每一點可導,則函式在開區間可導。

5、設f(x)=|x-a|g(x),g(x)在x=a處連續。

(1)若g(a)=0,則f(x)在x=a處可導,且導數等於0;

(2) 若g(a)≠0,則f(x)在x=a處不可導。

6、可導函式的奇函式的導函式是偶函式,可導函式的偶函式的導函式是奇函式。

17樓:angela韓雪倩

首先判斷函式在這個點x0是否有定義,即f(x0)是否存在;其次判斷f(x0)是否連續,即f(x0-), f(x0+), f(x0)三者是否相等;再次判斷函式在x0的左右導數是否存在且相等,即f『(x0-)=f'(x0+),只有以上都滿足了,則函式在x0處才可導。

可導的函式一定連續;不連續的函式一定不可導。

可導,即設y=f(x)是乙個單變數函式, 如果y在x=x0處存在導數y′=f′(x),則稱y在x=x[0]處可導。

如果乙個函式在x0處可導,那麼它一定在x0處是連續函式。

18樓:o客

判斷函式

在區間內是否可導,即函式的可導性,已超出中學範圍。但是應該知道定理:

1.所有初等函式在定義域的開區間內可導。

2.所有函式連續不一定可導,在不連續的地方一定不可導。

在大學,再加上用單側導數判斷可導性:

3.函式在某點的左、右導數存在且相等,則函式在該點可導。

4.函式在開區間的每一點可導,則函式在開區間可導。

19樓:匿名使用者

^y,就是x=m(z),y=n(z),接下來先求出曲線上一點(x0,y0,z0)繞z軸形成的曲線,也就是x^2+y^2=x0^2+y0^2=m(z0)^2+n(z)^2;z=z0;然後根據y的任意性,直接把z=z0去掉,x^2+y^2=m(z)^2+n(z)^2就是所求的曲面方程

為什麼說函式在某一點左右導數都存在,則一定連續

我非公式化的抽象的講一下,以便後人理解。導數就是函式的切線,若該點處不連續,則該點為端點,端點無切線,也就是沒導數。書上定理 可導一定連續,連續不一定可導。左右導數不相等認為是不可導。左導左連續,右導右連續嘛,說了可導一定連續,又怎能說不可能一定不連續呢,y x 在x 0處不可導,但左右導數都存在,...

左導數和右導數怎麼運算,函式的導數,左導數,右導數有什麼區別和聯絡

如果是連續 的函bai數 那麼du就直接求導即可 如果左右zhi不連續,那麼就使用導數dao的定義式子,左導數是 lim x趨於x0 f x f x0 x x0 右導數是 lim x趨於x0 f x f x0 x x0 函式的導數,左導數,右導數有什麼區別和聯絡 導函式是乙個函式,比如說f x 6x...

這個分段函式在0點的左右導數到底是多少

x 0 lim x 0 f x 0 x 0 x 0 x 0 1 右側導數是1 x 0 limx 0 f x 0 x 0 x x 1左側導數是 1 連續不一定可導,可導一定連續?那這個分段函式應該怎麼判斷呢,它在分段點的左右導數是相等的嗎?前提是連續才可導 所以在x 0處雖然左右導數相等,但還是不可導...