1加2加3加等等加99的和是多少為什麼這樣做

2025-07-28 12:45:12 字數 6232 閱讀 2624

1樓:網友

以1+2+3+4+5+……99+100為例1+100=101,2+99=101,3+98=101……共有100/2=50個 101

所以101*50=5050

從上述運算結果可以得出1+2+3+4+……99+100這類式子的簡便計算方法為。

首項+末項)*項數/2

所以1+2+3+4+……98+99

1(首項)+99(末項))*99(項數)/2=100*99/2

剛才說的(首項+末項)*項數/2 的公式不只是可以用在上面那道題,別的題目中也有應用,且用途十分廣泛。

2樓:匿名使用者

我記得是什麼高斯定律。

首項加末項的和乘項數除以2

1加2加3加4加5一直加到999等於多少??規律是什麼??

3樓:日月同輝

(1+999)x999÷2=499500

1加2加3加4加5一直加到999等於499500.

這是等差數列求和的問題。規律是首項加末項,其和乘項數,再除以2.

4樓:孤舟亢

等差數列 上底加下底的和乘高除以二。

1+2加3+4加等等等加98+99加一百怎麼算

5樓:小通說數

等差數列:1+2+3+4+..98+99+100,你記得算嗎?

6樓:

1+2+3..+99

普通求和公式。

首項+末項)*項數/2

首項(第乙個數)=1

末項(最後乙個數)=99

項數(多少個數)=99

所以(1+99)*100/2=4950

另外附送小故事一則:

爸爸問我一道數學題,從1加到100等於多少?我認真的思考了一會兒,想到了思維訓練課上老師教過的配對求和法,也就是1配100,等於101,連續配對,一共有50個101,加起來就等於5050。這是德國數學家高斯小時候就用過的。

爸爸又對我說:「除了這個,還有什麼簡便的計算方法嗎?」我根據高斯的這個方法想了一會兒,就說:

我知道,就是把1和99加起來等於100,一直這樣加下去,加到49+51,這樣就有49個100加在一起就是4900。然後,把剩下的50和100兩個數字再加上去,也是5050。」同樣一道數學題,有好幾種解決方法,有的難,有的容易,就看自己能不能想到啦,這真太有趣了。

7樓:李快來

=(1+100)x100÷2

朋友,請及時採納正確答案,下次還可能幫到您哦,您採納正確答案,您也可以得到財富值,謝謝。

8樓:戲永逸

用高斯演算法,第乙個數加最後乙個數然後乘最後乙個數然後除以2。所以是(1+100)x100÷2=5050

9樓:網友

這個問題我們可以用公式:(首項+末項 )×項數÷2也就是(1+100)×100÷2=5050

10樓:網友

1+2+3+4+..98+99+100=(1+100)x100÷2=5050

把這100個數分成2個一組,和都是101,一共有100÷2=50組,所以101x50=5050.

11樓:王翠芝

用1+99,2+98,3+97…加起來一共有50組,所以說這就是它的計算過程。

12樓:闢暢

高斯演算法:1+99=100 2+98=100 ..54+56=100 故有50個100 還有乙個孤獨的50

結果為50x100+50=5050

等差數列演算法:(首項+末項)x項數÷2=(1+100)x100÷2=5050

13樓:聽不清啊

把1+100並作一組,2+99並作一組,……50+51並作一組,共50組,每組的和都是101

所以,1+2+3+4+……99+100=5050

14樓:蕪蘅

1到100共100個數,等差數列,各項和等於:首項加尾項的和乘以項數除以2。

所以1+2+3+..98+99+100=(1+100)x100÷2=5050

15樓:網友

用前後兩個數字湊成100,就有49個100,還有乙個50,乙個一百,所以是4900+150=5050

16樓:專收各種妖女

1+2+3+4+5+6+..98+99可以把兩個數結合成100 1+99+2+98+3+97+..49+51+50=49*10+50=4950

17樓:網友

1+99=100;

剩下乙個50!

這一列算式有多少組,應該知道了吧?49組!

則相當於:49·100=4900,再加上剩下的50,就是4950了!

公式為:s(n)=[a(1)+a(n)]·n/2=(1+99)·99/2=4950

18樓:輕掠如火

前後相加就是50個100再加上中間乙個50 結果就是5050

19樓:老愚公

高斯演算法:最大數加最小數依次相加得5000,剩個50正好是5050

20樓:網友

用高中的知識來解釋就是: 等差數列的首項為a1,末項為an,項數為n,公差為d,前n項和為sn。

所以結果是sn=100*1+((100*(100-1))/2)*1=4950

21樓:歡歡喜喜

解:設 1+2+3+..97+98+99+100=x (1)

則 100+99+98+97+..3+2+1 =x (2)

1)+(2)得:

100+100+100+100+..100+100+100+100=2x

這裡面有101個100)

所以 101x100=2x

即: 2x=10100

x=5050

所以 1+2+3+..97+98+99+100=5050。

22樓:網友

這是等差數列。

其求和公式。

公式描述:公式中首項為a1,末項為an,項數為n,公差為d,前n項和為sn。

所以最後結果=100*1+100*(100-1)/2=5050

23樓:晩清

因為1+100=101 2+99=101 50+51=101 101×50=5050

所以1加到100等於5050

24樓:網友

等差數列求和:

等差數列的首項為a1,末項為an,項數為n,公差為d,前n項和為sn。

所以結果是sn=100*1+((100*(100-1))/2)*1=4950。

1+2+3一直加到99等與幾?

25樓:網友

等於4950。

按照+97···的方法進行加法,最後餘下50,所以共有49個100,總和就是4950。

26樓:網友

方法一:運用等差數列公式。

sn=(a1+an)*n/2

其中n=99,a1=1,an=a99=99

代入公式可以求得s99=(1+99)*99/2=4950

方法二:利用100達成簡便計算。

首項和末項相加。

1+99 2+98 .49+51,餘出乙個50

拓展資料

等差數列是指從第二項起,每一項與它的前一項的差等於同乙個常數的一種數列,常用a、p表示。這個常數叫做等差數列的公差,公差常用字母d表示。

例如:1,3,5,7,9……2n-1。通項公式為:

an=a1+(n-1)*d。首項a1=1,公差d=2。前n項和公式為:

sn=a1*n+[n*(n-1)*d]/2或sn=[n*(a1+an)]/2。注意:以上n均屬於正整數。

等差數列是常見數列的一種,如果乙個數列從第二項起,每一項與它的前一項的差等於同乙個常數,這個數列就叫做等差數列,而這個常數叫做等差數列的公差,公差常用字母d表示。

例如:1,3,5,7,9……2n-1。

通項公式為:an=a1+(n-1)*d。首項a1=1,公差d=2。

通項公式推導:

a2-a1=d;a3-a2=d;a4-a3=d……an-a(n-1)=d,將上述式子左右分別相加,得出an-a1=(n-1)*d→an=a1+(n-1)*d。

前n項和公式為:sn=a1*n+[n*(n-1)*d]/2

sn=[n*(a1+an)]/2

sn=d/2*n²+(a1-d/2)*n

注:以上n均屬於正整數。

等差數列公式包括:求和、通項、項數、公差。等。

27樓:僧湛恩

這是高中數學的等差數列,公差為1,共有99項,則利用求和公式sn=(a1+an)*n/2

其中n=99,a1=1,an=a99=99代入公式可以求得s99=(1+99)*99/2=4950擴充套件資料等差數列:如果乙個數列從第二項起,每一項與它的前一項的差等於同乙個常數,這個數列就叫做等差數列,這個常數叫做等差數列的公差,公差常用字母d表示。等差數列的通項公式為:

an=a1+(n-1)

d前n項和公式為:na1+n(n-1)d/2sn=n(a1+an)/2。注意:

以上n均屬於正整數。或。

28樓:喲啦咔

1+2+3+..99=(1+99)*[99-1)/2]+(1+99)/2=100*49+50=4950

計算公式是 (首項+末項)*項數/2

項數的求法是 (末項-首項)/公差+1

在式子裡「首項」是「1」,「末項」是「99」,「項數」是「99」.結果是4950.

拓展內容。和=(首項+末項)×項數÷2

項數=(末項-首項)÷公差+1

首項=2和÷項數-末項。

末項=2和÷項數-首項。

數列中項的總數為數列的「項數」。

29樓:網友

1+2+3一直加到99等於4950

總所周知,1+2+3一直加到100等於5050,1+2+3一直加到99與之相比少了100,5050-100=4950

30樓:燻黣

(1+99)×99÷2=4950

運用等差數列來解。

1+-2+3+-4等等等等一直加到99+-100等於多少?

31樓:不能夠

1-2+3-4一直加99-100=-50,這裡的話,可以每兩個進行計算,然後總共有50組,答案是-50。

32樓:小熊同學啊

可以分別計算奇數項和偶數項。

所以最終等於-50

從一開始,每個數字都加在一起,一直加到365的總和是多少,像這樣加1+2+3+4+5+......

33樓:deat丶

從一開始,每個數字都加在一起,一直加到365的總和是66795.

過程

倆個式子對應相加,每個對應的數相加都為366,每個式子中都有365個數,所以倆個式子相加之和為366*365,因為要求的答案加了2遍所以在÷2,所以答案為366*365/2=66795

34樓:樊柏源

答案是66795。解題思路如下:

該題可以看作求首項為1,公差為1的等差數列前365項和。

根據等差數列前n項和公式即可求出sn=1*365+365(365-1)/2=66795.

35樓:網友

=(1+365)x365/2=366x365/2=183x365=

如果是每個「數字」加在一起,沒有公式,你需要統計各個數字出現的次數。

36樓:

你太有才了,這個也忘記啊,人家高四可以小學就會算了啊!

1加2加3一直加到993的和是奇數還是偶數.理由是什麼

37樓:網友

1到993一共有993項,中間的項=497

而1+2+3+……993=497×993,為奇數。

所以,1加2加3一直加到993的和是奇數。

12345加等等等等加n1為什麼等於n

等差數列求和公式 sn n a1 an 2 而a1 1 an 1 n 1 所以sn 1 n 1 1 n 1 2 n n 1 2 上,群裡人名字前面的 lv幾 1.2.3.4.5等等 是什麼意思啊?哦,那是群主設的等級!只要常在群內發言或者簽到就會公升級 群主設定的。發言多簽到多 就會公升級。活躍度,...

為何1加1等於2?這是哲學,為何1加1等於2?這是乙個哲學

我個人認為,一加一等於二只是數字上的等於。而在物質世界和精神世界這道題有可能大於2也可能小於2。就拿兩個蘋果來說,乙個蘋果加乙個蘋果,當然等於兩個蘋果。但是,每乙個物質的質量是不同的。a蘋果重量是450g,b蘋果重量是350g,它們相加怎麼可能是等於900g或是700g呢?又比如,乙個人的意志的指數...

根號2減1加根號3減1加2等於多少

根號2 1 根號3 1 2 根號2 根號3 5減根號2的小數部分是多少?1 2 4 所以1 2 2 則 2 2 1 加上53 5 2 4 所以5 2的整數部分是3 所以小數部分是5 2 3 2 2 數字推理 根號2減1 根號3加1分之1 1 3後面乙個數字是什麼 2 1 1 2 1 1 3 1 1 ...